Reformatsky Reaction with N-Substituted 6-Bromo-2-oxochromene-3-carboxamides

V. V. Shchepin, D. V. Fotin, V. V. Fotin, and M. I. Vakhrin

Perm State University, ul. Bukireva 15, Perm, 614990, Russia

Received November 15, 2002

Abstract—Reformatsky reactions of ethyl α -bromopropionate, methyl α -bromobutyrate, and methyl α -bromoisobutyrate with N-substituted 6-bromo-2-oxochromene-3-carboxamides in the system diethyl ether–benzene– HMPA give *N*-benzyl-6-bromo-4-(1-alkoxycarbonylalkyl)-2-oxochroman-3-carboxamides, while in the system diethyl ether–benzene–HMPA–THF, 3-R¹-1-R²-1-R³-9-bromo-2,3,4,4a,5,10b-hexahydro-1*H*-chromeno[3,4-*c*]pyridine-2,4,5-triones are obtained.

In continuation of our studies on functionalization of heterocyclic compounds with zinc intermediates [1], in the present work we examined Reformatsky reactions of α -bromopropionic, α -bromobutyric, and α -bromoisobutyric acid esters with N-benzyl-, N-(4-methylphenyl)-, and N-(4-methoxyphenyl)-6bromo-2-oxochromene-3-carboxamides **Ia–Ic**. The results showed that bromozinc compounds derived from the above esters reacted with substrates **Ia–Ic** in a regioselective fashion, giving rise to intermediate **II** via attack on the electrophilic C⁴ atom.

When the reaction was carried out in the system diethyl ether–benzene–HMPA (2:1:1), the subsequent hydrolysis afforded *N*-benzyl-6-bromo-4-(1-alkoxy-carbonylalkyl)-2-oxochroman-3-carboxamides **IIIa** and **IIIb**. Addition of THF to the reaction mixture, followed by heating under reflux for 0.5 h, resulted in cyclization of bromozinc intermediates **IIa** and **IIb** to tricyclic structures **IVa–IVe**. Hydrolysis of the latter afforded 3-R¹-1-R²-1-R³-9-bromo-2,3,4,4a,5,10b-hexahydro-1*H*-chromeno[3,4-*c*]pyridine-2,4,5-triones **Va–Ve** as final products (Scheme 1). The structure of compounds **IIIa**, **IIIb**, and **Va–Ve** was proved by the elemental analyses and IR and ¹H NMR spectra.

The IR spectra of **Va–Ve** contained characteristic absorption bands due to stretching vibrations of the imide carbonyl groups (1695 and 1730 cm⁻¹) and lactone carbonyl (1770–1780 cm⁻¹). In the ¹H NMR spectra of these compounds, a doublet at δ 4.30–4.53 ppm (J = 6 Hz) was present, which belongs to 4a-H (CHC=O).

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer from samples dispersed in mineral oil. The ¹H NMR spectra were measured from solutions in $CDCl_3$ or DMSO- d_6 on an RYa-2310 instrument (60 MHz) using HMDS as internal reference.

N-Benzyl-6-bromo-4-(1-ethoxycarbonylethyl)-2oxochroman-3-carboxamide (IIIa). Ethyl α-bromopropionate, 4.67 g (0.028 mol), was added to a mixture of 4 g (0.007 mol) of metallic zinc prepared as fine turnings, 2 g (0.007 mol) of N-benzyl-6-bromo-2oxochromene-3-carboxamide, 15 ml of diethvl ether, 7 ml of benzene, and 7 ml of HMPA. The mixture was heated to initiate the reaction and was then heated for 30 min (after the addition of the bromo derivative was complete). The mixture was hydrolyzed with 10% acetic acid and extracted with ether. The extract was dried over sodium sulfate, the solvent was distilled off, and the residue was twice recrystallized from methanol. Yield 58%, mp 111-112°C. IR spectrum, v, cm⁻¹: 1650, 1735, 1790 (C=O); 3350 (NH). ¹H NMR spectrum (CDCl₃), δ, ppm: 1.10 d (3H, CH₃), 1.14 t (3H, OCH₂CH₃), 2.40–2.80 m (1H, CHCH₃), ~3.75 m (2H, 3-H, 4-H), 4.08 q (2H, OCH₂CH₃), 4.30 d (2H, CH₂Ph), 7.05–7.50 m (9H, Ph, C₆H₃Br, NH). Found, %: C 57.28; H 4.73; N 3.20. C22H22BrNO5. Calculated, %: C 57.40; H 4.82; N 3.04.

N-Benzyl-6-bromo-4-(1-methoxycarbonyl-1methylethyl)-2-oxochroman-3-carboxamide (IIIb) was synthesized in a similar way using 5.06 g (0.028 mol) of methyl α -bromoisobutyrate. Yield 85%,

I, $R^1 = PhCH_2$ (**a**), $4-MeC_6H_4$ (**b**), $4-MeOC_6H_4$ (**c**); **II**, **III**, $R^1 = PhCH_2$, $R^2 = H$, $R^3 = Me$, $R^4 = Et$ (**a**); $R^1 = PhCH_2$, $R^2 = R^3 = R^4 = Me$ (**b**); **IV**, **V**, $R^1 = 4-MeC_6H_4$, $R^2 = H$, $R^3 = Me$, $R^4 = Me$ (**b**); $R^1 = 4-MeC_6H_4$, $R^2 = H$, $R^3 = Et$, $R^4 = Me$ (**b**); $R^1 = 4-MeC_6H_4$, $R^2 = R^3 = R^4 = Me$ (**c**); $R^1 = 4-MeOC_6H_4$, $R^2 = H$, $R^3 = R^4 = Me$ (**c**); $R^1 = 4-MeOC_6H_4$, $R^2 = H$, $R^3 = R^4 = Me$ (**d**); $R^1 = 4-MeOC_6H_4$, $R^2 = H$, $R^3 = Et$, $R^4 = Me$ (**e**).

mp 161–162°C. IR spectrum, v, cm⁻¹: 1670, 1730, 1790 (C=O); 3360 (NH). ¹H NMR spectrum (DMSO- d_6), δ , ppm: 1.08 s (6H, CH₃), 3.50 s (3H, OCH₃), 3.57 s and 3.90 s (2H, 3-H, 4-H), 4.07 d (2H, CH₂Ph), 6.90–7.50 m (8H, Ph, C₆H₃Br), 8.80 t (1H, NH). Found, %: C 57.23; H 4.71; N 2.96. C₂₂H₂₂BrNO₅. Calculated, %: C 57.40; H 4.82; N 3.04.

3-R¹-1-R²-1-R³-9-Bromo-2,3,4,4a,5,10b-hexahydro-1*H*-chromeno[3,4-*c*]pyridine-2,4,5-triones Va–Ve were synthesized in a similar way using 4.67 g (0.028 mol) of ethyl α -bromopropionate, 5.06 g (0.028 mol) of methyl α -bromobutyrate, or 5.06 g (0.028 mol) of methyl α -bromoisobutyrate. When the reaction mixture no longer boiled spontaneously, it was heated for 30 min, 8 ml of THF was added, and the mixture was heated for an additional 30 min.

9-Bromo-1-methyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro-1*H***-chromeno[3,4-***c*]pyridine-**2,4,5-trione (Va).** Yield 60%, mp 251–254°C. ¹H NMR spectrum (CDCl₃–DMSO-*d*₆), δ, ppm: 1.27 d (3H, CH₃CH), 2.30 s (3H, CH₃C₆H₄), 2.60–3.00 m (1H, CH₃CH), 3.40–4.00 m (1H, CHCHCH₃), 4.33 d (1H, CHCO), 6.80–7.70 m (7H, C_6H_3 , 4-CH₃ C_6H_4). Found, %: C 57.80; H 3.78; N 3.49. $C_{20}H_{16}BrNO_4$. Calculated, %: C 57.99; H 3.89; N 3.38.

9-Bromo-1-ethyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro-1*H***-chromeno[3,4-***c*]**pyridine-2,4,5-trione (Vb).** Yield 62%, mp 282–283°C. ¹H NMR spectrum (DMSO- d_6), δ , ppm: 0.97 t (3H, CH₃CH₂), 1.50–2.10 m (2H, CH₃CH₂), 2.30 s (3H, CH₃C₆H₄), 2.70–3.20 m (1H, CH₃CH₂CH), 3.70– 4.20 m (1H, CHCHCH₂CH₃), 4.53 d (1H, CHCO), 6.70–7.70 m (7H, C₆H₃, 4-CH₃C₆H₄). Found, %: C 58.72; H 4.12; N 3.15. C₂₁H₁₈BrNO₄. Calculated, %: C 58.89; H 4.24; N 3.27.

9-Bromo-1,1-dimethyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro-1*H*-chromeno[**3,4**-*c*]**pyridine-2,4,5-trione (Vc).** Yield 82%, mp 250–252°C. ¹H NMR spectrum (CDCl₃–DMSO-*d*₆), δ , ppm: 1.03 s and 1.30 s [6H, (CH₃)₂C], 2.33 s (3H, CH₃C₆H₄), 3.80 d and 4.30 d (2H, CHCH), 6.80–7.70 m (7H, C₆H₃, 4-CH₃C₆H₄). Found, %: C 58.79; H 4.17; N 3.41. C₂₁H₁₈BrNO₄. Calculated, %: C 58.89; H 4.24; N 3.27. **9-Bromo-3-(4-methoxyphenyl)-1-methyl-2,3,4,-4a,5,10b-hexahydro-1***H***-chromeno[3,4**-*c*]pyridine-**2,4,5-trione (Vd).** Yield 77%, mp 240–243°C. ¹H NMR spectrum (CDCl₃–DMSO-*d*₆), δ , ppm: 1.26 d (3H, CH₃CH); 2.60–3.00 m (1H, CH₃CH); 3.30– 3.90 m (1H, CHCHCH₃); 3.76 s (3H, CH₃O); 4.32 d (1H, CHCO); 6.97 s (4H, C₆H₄); 7.06 d, 7.47 s, 7.54 d (3H, C₆H₃). Found, %: C 55.70; H 3.64; N 3.43. C₂₀H₁₆BrNO₅. Calculated, %: C 55.83; H 3.75; N 3.26.

9-Bromo-1-ethyl-3-(4-methoxyphenyl)-2,3,4,4a,-5,10b-hexahydro-1*H***-chromeno[3,4-***c***]pyridine-2,4,5-trione (Ve).** Yield 83%, mp 223–227°C. ¹H NMR spectrum (CDCl₃–DMSO-*d*₆), δ, ppm: 0.97 t (3H, CH₃CH₂); 1.50–2.10 m (2H, CH₃CH₂); 2.60–3.10 m (1H, CH₃CH₂CH); 3.70–4.10 m (1H, CHCHCH₂CH₃); 4.37 d (1H, CHCO); 6.87 s (4H, C₆H₄); 7.04 d, 7.46 s, 7.53 d (3H, C₆H₃). Found, %: C 56.80; H 4.15; N 3.01. C₂₁H₁₈BrNO₅. Calculated, %: C 56.77; H 4.08; N 3.15.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-96036).

REFERENCE

1. Shchepin, V.V., Kalyuzhnyi, M.M., and Shchepin, R.V., *Khim. Geterotsikl. Soedin.*, 2001, no. 10, p. 1415.