Reformatsky Reaction with N-Substituted 6-Bromo-2-oxochromene-3-carboxamides

V. V. Shchepin, D. V. Fotin, V. V. Fotin, and M. I. Vakhrin
Perm State University, ul. Bukireva 15, Perm, 614990, Russia

Received November 15, 2002

Abstract

Reformatsky reactions of ethyl α-bromopropionate, methyl α-bromobutyrate, and methyl α-bromoisobutyrate with N -substituted 6-bromo-2-oxochromene-3-carboxamides in the system diethyl ether-benzeneHMPA give N-benzyl-6-bromo-4-(1-alkoxycarbonylalkyl)-2-oxochroman-3-carboxamides, while in the system diethyl ether-benzene-HMPA-THF, 3-R ${ }^{1}-1-\mathrm{R}^{2}-1-\mathrm{R}^{3}-9$-bromo-2,3,4,4a,5,10b-hexahydro- $1 H$-chromeno 3 , $\left.4-c\right]$ -pyridine-2,4,5-triones are obtained.

In continuation of our studies on functionalization of heterocyclic compounds with zinc intermediates [1], in the present work we examined Reformatsky reactions of α-bromopropionic, α-bromobutyric, and α-bromoisobutyric acid esters with N-benzyl-, N-(4-methylphenyl)-, and N-(4-methoxyphenyl)-6-bromo-2-oxochromene-3-carboxamides Ia-Ic. The results showed that bromozinc compounds derived from the above esters reacted with substrates Ia-Ic in a regioselective fashion, giving rise to intermediate II via attack on the electrophilic C^{4} atom.

When the reaction was carried out in the system diethyl ether-benzene-HMPA ($2: 1: 1$), the subsequent hydrolysis afforded N -benzyl-6-bromo-4-(1-alkoxy-carbonylalkyl)-2-oxochroman-3-carboxamides IIIa and IIIb. Addition of THF to the reaction mixture, followed by heating under reflux for 0.5 h , resulted in cyclization of bromozinc intermediates IIa and IIb to tricyclic structures IVa-IVe. Hydrolysis of the latter afforded $3-\mathrm{R}^{1}-1-\mathrm{R}^{2}-1-\mathrm{R}^{3}-9$-bromo-2,3,4,4a,5,10b-hexahydro-1 H -chromeno[3,4-c]pyridine-2,4,5-triones $\mathbf{V a}-\mathbf{V e}$ as final products (Scheme 1). The structure of compounds IIIa, IIIb, and Va-Ve was proved by the elemental analyses and IR and ${ }^{1} \mathrm{H}$ NMR spectra.

The IR spectra of Va-Ve contained characteristic absorption bands due to stretching vibrations of the imide carbonyl groups (1695 and $1730 \mathrm{~cm}^{-1}$) and lactone carbonyl (1770-1780 cm^{-1}). In the ${ }^{1} \mathrm{H}$ NMR spectra of these compounds, a doublet at $\delta 4.30-4.53$ $\mathrm{ppm}(J=6 \mathrm{~Hz})$ was present, which belongs to $4 \mathrm{a}-\mathrm{H}$ ($\mathrm{CHC}=\mathrm{O}$).

EXPERIMENTAL

The IR spectra were recorded on a UR-20 spectrometer from samples dispersed in mineral oil. The ${ }^{1} \mathrm{H}$ NMR spectra were measured from solutions in CDCl_{3} or DMSO- d_{6} on an RYa-2310 instrument (60 MHz) using HMDS as internal reference.
N-Benzyl-6-bromo-4-(1-ethoxycarbonylethyl)-2-oxochroman-3-carboxamide (IIIa). Ethyl α-bromopropionate, $4.67 \mathrm{~g}(0.028 \mathrm{~mol})$, was added to a mixture of $4 \mathrm{~g}(0.007 \mathrm{~mol})$ of metallic zinc prepared as fine turnings, $2 \mathrm{~g}(0.007 \mathrm{~mol})$ of N-benzyl-6-bromo-2-oxochromene-3-carboxamide, 15 ml of diethyl ether, 7 ml of benzene, and 7 ml of HMPA. The mixture was heated to initiate the reaction and was then heated for 30 min (after the addition of the bromo derivative was complete). The mixture was hydrolyzed with 10% acetic acid and extracted with ether. The extract was dried over sodium sulfate, the solvent was distilled off, and the residue was twice recrystallized from methanol. Yield $58 \%, \mathrm{mp} 111-112^{\circ} \mathrm{C}$. IR spectrum, v, $\mathrm{cm}^{-1}: 1650,1735,1790(\mathrm{C}=\mathrm{O}) ; 3350(\mathrm{NH}) .{ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right), \delta$, ppm: $1.10 \mathrm{~d}\left(3 \mathrm{H}, \mathrm{CH}_{3}\right), 1.14 \mathrm{t}$ $\left(3 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 2.40-2.80 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCH}_{3}\right), \sim 3.75 \mathrm{~m}$ $(2 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}), 4.08 \mathrm{q}\left(2 \mathrm{H}, \mathrm{OCH}_{2} \mathrm{CH}_{3}\right), 4.30 \mathrm{~d}(2 \mathrm{H}$, $\left.\mathrm{CH}_{2} \mathrm{Ph}\right), 7.05-7.50 \mathrm{~m}\left(9 \mathrm{H}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}, \mathrm{NH}\right)$. Found, \%: C 57.28; H 4.73; N 3.20. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{5}$. Calculated, \%: C 57.40; H 4.82; N 3.04.
N-Benzyl-6-bromo-4-(1-methoxy carbonyl-1-methylethyl)-2-oxochroman-3-carboxamide (IIIb) was synthesized in a similar way using 5.06 g $(0.028 \mathrm{~mol})$ of methyl α-bromoisobutyrate. Yield 85%,

Scheme 1.

I, $\mathrm{R}^{1}=\mathrm{PhCH}_{2}(\mathbf{a}), 4-\mathrm{MeC}_{6} \mathrm{H}_{4}(\mathbf{b}), 4-\mathrm{MeOC}_{6} \mathrm{H}_{4}(\mathbf{c}) ;$ II, III, $\mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{Et}(\mathbf{a}) ; \mathrm{R}^{1}=\mathrm{PhCH}_{2}, \mathrm{R}^{2}=\mathrm{R}^{3}=\mathrm{R}^{4}=$ $\operatorname{Me}(\mathbf{b}) ; \mathbf{I V}, \mathbf{V}, \mathrm{R}^{1}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Me}, \mathrm{R}^{4}=\mathrm{Et}(\mathbf{a}) ; \mathrm{R}^{1}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Et}, \mathrm{R}^{4}=\mathrm{Me}(\mathbf{b}) ; \mathrm{R}^{1}=4-\mathrm{MeC}_{6} \mathrm{H}_{4}$, $R^{2}=R^{3}=R^{4}=\operatorname{Me}(\mathbf{c}) ; \mathrm{R}^{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{R}^{4}=\mathrm{Me}(\mathbf{d}) ; \mathrm{R}^{1}=4-\mathrm{MeOC}_{6} \mathrm{H}_{4}, \mathrm{R}^{2}=\mathrm{H}, \mathrm{R}^{3}=\mathrm{Et}, \mathrm{R}^{4}=\mathrm{Me}(\mathbf{e})$.
$\mathrm{mp} 161-162^{\circ} \mathrm{C}$. IR spectrum, $v, \mathrm{~cm}^{-1}: 1670,1730,1790$ (C=O); $3360(\mathrm{NH}) .{ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), δ, ppm: $1.08 \mathrm{~s}\left(6 \mathrm{H}, \mathrm{CH}_{3}\right), 3.50 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{OCH}_{3}\right), 3.57 \mathrm{~s}$ and 3.90 s ($2 \mathrm{H}, 3-\mathrm{H}, 4-\mathrm{H}$), $4.07 \mathrm{~d}\left(2 \mathrm{H}, \mathrm{CH}_{2} \mathrm{Ph}\right), 6.90-$ $7.50 \mathrm{~m}\left(8 \mathrm{H}, \mathrm{Ph}, \mathrm{C}_{6} \mathrm{H}_{3} \mathrm{Br}\right), 8.80 \mathrm{t}(1 \mathrm{H}, \mathrm{NH})$. Found, \%: C 57.23; H 4.71; N 2.96. $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{BrNO}_{5}$. Calculated, \%: C 57.40; H 4.82; N 3.04.

3-R ${ }^{1}$-1- R^{2}-1- \mathbf{R}^{3}-9-Bromo-2,3,4,4a,5,10b-hexa-hydro-1H-chromeno[3,4-c]pyridine-2,4,5-triones Va-Ve were synthesized in a similar way using 4.67 g $(0.028 \mathrm{~mol})$ of ethyl α-bromopropionate, 5.06 g $(0.028 \mathrm{~mol})$ of methyl α-bromobutyrate, or 5.06 g $(0.028 \mathrm{~mol})$ of methyl α-bromoisobutyrate. When the reaction mixture no longer boiled spontaneously, it was heated for $30 \mathrm{~min}, 8 \mathrm{ml}$ of THF was added, and the mixture was heated for an additional 30 min .

9-Bromo-1-methyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro- $\mathbf{1 H}$-chromeno $[3,4-c]$ pyridine-2,4,5-trione (Va). Yield 60%, mp $251-254^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}\right.$-DMSO- $\left.d_{6}\right), \delta$, ppm: 1.27 d $\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 2.30 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.60-3.00 \mathrm{~m}$ $\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right), 3.40-4.00 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCHCH}_{3}\right), 4.33 \mathrm{~d}$
$(1 \mathrm{H}, \mathrm{CHCO}), 6.80-7.70 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found, \%: C 57.80; H 3.78; N 3.49. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{4}$. Calculated, \%: C 57.99; H 3.89; N 3.38.

9-Bromo-1-ethyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro- $\mathbf{1 H}$-chromeno $[3,4-c]$ pyridine-2,4,5-trione (Vb). Yield $62 \%, \mathrm{mp} 282-283^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum (DMSO- d_{6}), $\delta, \mathrm{ppm}: 0.97 \mathrm{t}(3 \mathrm{H}$, $\mathrm{CH}_{3} \mathrm{CH}_{2}$), $1.50-2.10 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right), 2.30 \mathrm{~s}(3 \mathrm{H}$, $\left.\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right), 2.70-3.20 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}\right), 3.70-$ $4.20 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCHCH}_{2} \mathrm{CH}_{3}\right), 4.53 \mathrm{~d}(1 \mathrm{H}, \mathrm{CHCO})$, $6.70-7.70 \mathrm{~m}\left(7 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$. Found, $\%$: C 58.72; H 4.12; N 3.15. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}$. Calculated, \%: C 58.89; H 4.24; N 3.27.

9-Bromo-1,1-dimethyl-3-(4-methylphenyl)-2,3,4,-4a,5,10b-hexahydro- $1 H$-chromeno $[3,4-c]$ pyridine-2,4,5-trione (Vc). Yield 82%, mp $250-252^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}-\mathrm{DMSO}-d_{6}\right), \delta$, ppm: 1.03 s and $1.30 \mathrm{~s}\left[6 \mathrm{H},\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}\right], 2.33 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}\right)$, 3.80 d and $4.30 \mathrm{~d}(2 \mathrm{H}, \mathrm{CHCH}), 6.80-7.70 \mathrm{~m}(7 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{3}, 4-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4}$). Found, \%: C 58.79; H 4.17; N 3.41. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{4}$. Calculated, \%: C 58.89; H 4.24; N 3.27.

9-Bromo-3-(4-methoxyphenyl)-1-methyl-2,3,4,-4a,5,10b-hexahydro- $\mathbf{1 H}$-chromeno[3,4-c]pyridine-2,4,5-trione (Vd). Yield $77 \%, \mathrm{mp} 240-243^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}-\right.$ DMSO- $\left.d_{6}\right), \delta$, ppm: 1.26 d ($3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}$); $2.60-3.00 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}\right) ; 3.30-$ $3.90 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCHCH}_{3}\right) ; 3.76 \mathrm{~s}\left(3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{O}\right) ; 4.32 \mathrm{~d}$ ($1 \mathrm{H}, \mathrm{CHCO}$); $6.97 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.06 \mathrm{~d}, 7.47 \mathrm{~s}, 7.54 \mathrm{~d}$ ($3 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{3}$). Found, \%: C 55.70; H 3.64; N 3.43. $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrNO}_{5}$. Calculated, \%: C 55.83; H 3.75; N 3.26.

9-Bromo-1-ethyl-3-(4-methoxyphenyl)-2,3,4,4a,-5,10b-hexahydro- $1 H$-chromeno $[3,4-c]$ pyridine-2,4,5-trione (Ve). Yield 83%, mp $223-227^{\circ} \mathrm{C}$. ${ }^{1} \mathrm{H}$ NMR spectrum $\left(\mathrm{CDCl}_{3}-\mathrm{DMSO}-d_{6}\right), \delta, \mathrm{ppm}: 0.97 \mathrm{t}$
($3 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}$); $1.50-2.10 \mathrm{~m}\left(2 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2}\right) ; 2.60-3.10 \mathrm{~m}$ ($1 \mathrm{H}, \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}$); $3.70-4.10 \mathrm{~m}\left(1 \mathrm{H}, \mathrm{CHCHCH}_{2} \mathrm{CH}_{3}\right)$; $4.37 \mathrm{~d}(1 \mathrm{H}, \mathrm{CHCO}) ; 6.87 \mathrm{~s}\left(4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right) ; 7.04 \mathrm{~d}, 7.46 \mathrm{~s}$, 7.53 d (3H, C ${ }_{6} \mathrm{H}_{3}$). Found, \%: C 56.80; H 4.15; N 3.01. $\mathrm{C}_{21} \mathrm{H}_{18} \mathrm{BrNO}_{5}$. Calculated, \%: C 56.77; H 4.08; N 3.15.

This study was performed under financial support by the Russian Foundation for Basic Research (project no. 04-03-96036).

REFERENCE

1. Shchepin, V.V., Kalyuzhnyi, M.M., and Shchepin, R.V., Khim. Geterotsikl. Soedin., 2001, no. 10, p. 1415.
